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Abstract. There are now several experimental facilities that use strong X-ray fields to produce plasmas with densities 
ranging from ~1 to ~103 g/cm3.  Large laser facilities, such as the National Ignition Facility (NIF) and the Omega laser 
reach high densities with radiatively driven compression, short-pulse lasers such as XFELs produce solid density plasmas 
on very short timescales, and the Orion laser facility combines these methods.  Despite the high densities, these plasmas 
can be very far from LTE, due to large radiation fields and/or short timescales, and simulations mostly use collisional-
radiative (CR) modeling which has been adapted to handle these conditions.  These dense plasmas present challenges to 
CR modeling.  Ionization potential depression (IPD) has received much attention recently as researchers work to 
understand experimental results from LCLS and Orion [1,2].  However, incorporating IPD into a CR model is only one 
challenge presented by these conditions.  Electron degeneracy and the extent of the state space can also play important 
roles in the plasma energetics and radiative properties, with effects evident in recent observations [3,4].   We discuss the 
computational issues associated with these phenomena and methods for handling them. 

 

INTRODUCTION 

 
Multiple experimental facilities can now produce plasmas with densities greater than solid density, up to nearly 

103 g/cm3.  Large lasers achieve this by compressing material on ns timescales with shocks and ablation pressure.  
Targets used in experiments on the NIF and Omega lasers routinely reach these large densities at temperatures up to 
several keV, although conditions are not uniform and density and temperatures may vary by several decades across 
the compressed target.  Even at these densities, the high temperatures and large radiation fields ensure that any 
elements in these plasmas that are not completely stripped remain out of LTE.  Short-pulse lasers ionize and heat 
material on sub-ps timescales, too short for hydrodynamic expansion to occur.  Again, because of the strong ionizing 
fields and short timescales, these plasmas also can remain far from LTE. 

The main simulation tool for these non-LTE plasmas remains the collisional-radiative (CR) model, originally 
developed for simulating low-density plasmas [5].  Applying a CR model to these dense radiatively driven plasmas 
requires extensions to handle a variety of physical phenomena.  At high densities, ionization potential depression 
and electron degeneracy become important, and excited state distributions expand to cover an increasingly large 
portion of state space, i.e. the enumeration of atomic states.  Interactions with strong X-ray radiation also enlarge the 
accessible state space by driving transitions that would otherwise be negligible.  In addition, either local coupling of 
narrow-band radiation from an XFEL or non-local coupling of transported radiation demands careful attention to 
line profiles and energy balance. 

Each of these phenomena requires generalization of some aspect of the CR model, introducing additional 
complexity and computational cost.  Here we consider some of the issues that arise, discuss methods for handling 
them, and present examples demonstrating the importance of including these phenomena in simulations. 

 



CONTINUUM LOWERING 

The starting point for almost all CR models is the development of an atomic model for each element, providing 
both the energy level structure for that element and information needed to calculate transition rates (e.g. oscillator 
strengths).  This data is commonly provided for an “isolated atom”, i.e. calculated in the absence of boundaries or 
neighboring ions.  However, the plasma environment affects both the structure and the rates, and these changes must 
then be incorporated in the evaluation of the CR model rather than in the atomic data.  At low densities, the changes 
are minor and can be incorporated easily.  At high densities, the changes are dramatic and impact many aspects of 
the CR model. 

In the “isolated atom” limit of vanishing density, the partition function for a given element (or charge state) 
becomes infinite, since the atomic levels extend to infinity in principal quantum number with increasing degeneracy 
but finite energy. The electrostatic potential due to the presence of free electrons and neighboring ions at a finite 
density effectively lowers the ionization potential and truncates the partition functions.  This phenomenon is referred 
to as “pressure ionization”, “continuum lowering” or “ionization potential depression” (IPD).  At low densities, this 
truncation may happen at higher principal quantum number n than those included in the CR atomic data and the 
effects are (hopefully) negligible.  Under conditions obtained in recent experiments [1,2], the truncation occurs in 
the neighborhood of n ~ 2-3.  Theoretical modeling of these experimental results is currently an active research area, 
as extant IPD models are not completely satisfactory for these conditions. 

A widely used model for IPD, due to Stewart and Pyatt [6], is reproduced here.  An ion of net charge z after 
ionization experiences a reduction in ionization potential of magnitude 
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and, for simplicity, we have assumed T = Te = Ti.  At low density / high temperature, this expression limits to the 
Debye-Hückel model, while at high density / low temperature, it limits to the ion sphere model 
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A straightforward implementation of this in a CR model simply deletes levels in each charge state z that are 

bound by less than ΔEz.  In practice, several difficulties arise from this simple implementation.  The IPD changes the 
ionization balance by an amount depending on the plasma conditions, so the iterative process of obtaining a self-
consistent value for ne to maintain charge neutrality becomes more complicated.  Since the existence of a particular 
bound state depends discontinuously on ne, the iterations may oscillate rather than converge.  Similar statements 
apply to constructing derivatives with respect to temperature and electron density, as the energy levels Ei now also 
depend on the plasma conditions.  The derivatives themselves will also be discontinuous, possibly leading to 
numerical difficulties. 

We also note that at high enough densities (or low enough temperatures), some charge states may end up with no 
bound states remaining, with the most neutral charge states disappearing first.  Due to the approximate nature of the 
model, the remaining charge states may not be contiguous under all conditions.  This can also lead to erroneous 
behavior in the CR model if not guarded against.  The disappearance of the most neutral charge states at high density 
and low temperature crudely mimics the formation of nonlocalized conduction bands in metals, but a CR model 
lacks the necessary physics to transition to a solid state.  See [7] for an attempt to link to some aspects of a solid 
state model. 



Allowing the bound states to gradually disappear can ameliorate the problems associated with discontinuous 
behavior.  Physical justifications for this are the broadening of the level with increased perturbations and 
fluctuations in the electrostatic potential due to thermal motions of the ions.  In practice, the gradual disappearance 
is achieved by decreasing the degeneracy gi of level i so that it smoothly vanishes over an appropriate range of 
densities.  Zimmerman and More [8] introduced a simple version of this in the context of an average-atom model.  A 
more comprehensive approach, the occupation probability formalism [9], derives the reduced degeneracies and 
partition function truncation from contributions of 2-particle interactions to the Helmholtz free energy, ensuring a 
thermodynamically consistent EOS in LTE.  The application of this formalism to non-LTE simulations is discussed 
in [10]. 

An example of these effects under conditions less extreme than those of those of [1,2] is given in Figure 1, which 
shows the emissivity for a small amount of Ar (0.1% by number) doped into hydrogen at electron (ion) temperatures 
of 5 (10) keV, and mass densities of 0.25, 0.5 and 1.0 g/cc, corresponding to conditions of interest for experiments 
on Omega and NIF.  The spectral region shown extends from just below the Lyman beta line to just above the 
ionization edge of H-like Ar.  The dashed line in each of the three sets of spectra was calculated without any IPD, as 
evidenced by the constant position of the ionization edge.  The spectra given by the blue lines include IPD (via the 
Stewart-Pyatt model) without degeneracy lowering (DL).  The IPD lowers the ionization edge by an amount 
increasing with density and modifies the ionization balance slightly, leading to a slight increase in continuum 
emission, but does not affect the Lyman line emission.  The spectra given by the red lines incorporate degeneracy 
lowering through a model that identifies the ionized fraction by integrating over the microfield distribution, resulting 
in decreased and broadened emission from the upper excited states. 

 

  
 

FIGURE 1.  Spectral emissivity of an Ar-doped (0.1%) hydrogen plasma with Te = 5 keV, Ti = 10 keV, and three different 
number densities, calculated without IPD (dashed line), with IPD but without degeneracy lowering (blue line), and with IPD 

including degeneracy lowering (red line). 
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ELECTRON DEGENERACY 

 
Electron degeneracy has long been a concern in ICF and astrophysics, primarily because of its effects on dense 

matter equation of state and energetics.  The advent of experiments on XFELs and dense plasma spectroscopy in 
high-convergence NIF implosions has renewed attention on degeneracy effects in CR modeling.  Accordingly, we 
describe modifications to the standard CR approach to incorporate degeneracy effects. 

For thermal electrons described by temperature Te, the usual Maxwell-Boltzmann distribution is only valid at 
densities low enough so the electrons are not degenerate.  Higher densities require use of the Fermi-Dirac 
distribution, in which the mean occupation of a state of energy ε is given by 

 Fe ε( ) = 1
1+ e ε−µ( )/kTe  (4) 

and the electron distribution function is 
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where Im is the Fermi-Dirac integral of order m and we have assumed non-relativistic electrons with ε = 1
2 mv

2 .  In 
the low-density limit, -µ/kTe >>1, the chemical potential and electron density are related through 
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where λe is the electron thermal wavelength.  Note that the mean occupation is equal to ½ for electrons with energy 
equal to the chemical potential, which limits to the Fermi energy Ef at zero temperature.  For non-zero temperatures, 
degeneracy effects will be significant for electron energies of order the Fermi energy 

 EF =
h2

2me

3π 2ne( )2/3  (8) 

Transition rates, radiative properties and material properties must all be modified from the formulas used for 
low-density plasmas.  A discussion of the thermodynamics of a degenerate electron gas is available from most 
textbooks on statistical mechanics, e.g. [11].  A result of particular utility for CR models is the Saha equation for 
degenerate electrons [12] 
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that can be used to provide detailed balance relationships valid at any electron density by simply substituting eµ/kT for 
each occurrence of ½ neλe

3. 
Including degeneracy effects, the transition rate for a collisional excitation of energy ΔE becomes 
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where the integral over the electron distribution now includes a blocking factor 1− Fe[ ]   for the outgoing electron of 

energy ε-ΔE.  Expressing the cross section in terms of the collision strength Ω ∝ εσ (or equivalently, the Gaunt 
factor), the transition rate is proportional to the integral 
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where we have omitted the constants relating Ω and εσ.  Since the collision strength varies slowly with energy, we 
first assume that the collision strength is a constant.  The integral can then be done analytically, giving 
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while the same integral in the absence of degeneracy gives 
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The ratio of these two integrals then provides a “degeneracy factor” which, when multiplied by a non-degenerate 
transition rate, produces the equivalent transition rate incorporating degeneracy effects 
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The expression in brackets varies slowly with µ/kTe, becoming a constant, ΔE/kTe, in the high-density limit.  The 
transition rate does not increase further with electron density, unlike the non-degenerate case, being restricted by the 
limiting value of the electron distribution function. 

While the collision strength is not strictly constant, small deviations do not affect the degeneracy factor 
significantly. For collision strengths well approximated by a constant plus a logarithmic term, the formula 
underestimates the numerical degeneracy factor by at most a factor of a few while the degeneracy factor itself 
decreases by ten orders of magnitude.  Collision strengths of forbidden transitions tend to vary in leading order as ε-1 
or ε-2 and for these transitions the formula overestimates the degeneracy factor by a similar factor.  If higher 
accuracy is desired, numerical integrations corresponding to ln(ε) and ε-n terms could provide slowly varying 
corrections to the above degeneracy factor. 

A collisional ionization of energy ΔE produces two outgoing electrons of energy ε’ and ε-ε’-ΔE and the 
transition rate integral contains blocking factors for both electrons 
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Assuming that the differential cross section σ(ε,ε’) is independent of ε’ and that the collision strength is independent 
of ε leads to a degeneracy factor for collisional ionization rates of 
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The double integral cannot be done analytically, but the expression 
 β ci ≈ζβ cx , ζ = ln 1+ e−µ/kTe( )  (17) 

provides a very good approximation over a wide range of parameters. 
 
 

 
 

FIGURE 2.  Degeneracy factors for a transition with ΔE/kT = 1.  The upper dashed line gives the degeneracy factor in the 
absence of blocking factors.  The blue line gives the degeneracy factor for excitation βcx. The solid red line gives the degeneracy 

factor for ionization βci from Eq. 17, while the solid red line gives βci from a numerical evaluation of Eq.16. 
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Figure 2 presents these degeneracy factors for a transition with ΔE/kTe = 1.  Choosing a different value of ΔE/kTe 
shifts the curves slightly in µ/kTe, but does not change their character.  The upper dashed line gives the degeneracy 
factor in the absence of blocking factors, showing the difference in collisional rates due to using a Fermi-Dirac 
distribution instead of a Maxwell-Boltzmann distribution for the electrons. 

The degeneracy factor for ionization drops more sharply with increasing µ/kTe than the factor for excitation, due 
to the presence of blocking factors for both outgoing electrons.  The main approximation here is the assumption that 
the differential cross section is independent of the outgoing electron energy.  However, numerical integrations using 
a more realistic differential cross section [13] give results that are virtually indistinguishable from those obtained 
with a differential cross section independent of ε’. 

Electron degeneracy also affects other transitions that involve free electrons.  Photoionization produces a single 
outgoing free electron and requires an appropriate blocking factor, decreasing the absorption coefficient for photons 
close to threshold energy.  Autoionization transitions should be treated in a similar manner, although the emitted 
electrons tend to be of relatively high energy and minimally affected by degeneracy. 

Transitions between free electron states, i.e. bremsstrahlung and inverse bremsstrahlung, do not affect the bound 
state distributions but can be critical in determining the energy balance of a dense radiating plasma.  The effects of 
degeneracy on these absorption and emission processes have been discussed in the literature in varying levels of 
detail, e.g. [14,15], but can be understood in terms of the previous discussion.  Each such (absorption) transition 
involves a single incoming electron of energy ε and a single outgoing electron of energy ε-hν, with a cross-section 
inversely proportional to electron velocity (incorporating various quantum effects into a Gaunt factor).  Accordingly, 
under the assumption of a constant Gaunt factor, the degenerate and non-degenerate treatments differ by the factor 
βcx, with the substitution of hν for ΔE.  We note that plasma collective effects can also strongly affect radiative 
properties [16] and assume that these effects can be treated independently of degeneracy effects. 

 

 
(a) 

 
 
 
 

 
 
 

(b) 

FIGURE 3.  (a) Time evolution of the electron temperature of the central zone of a 0.01 um thick foil of solid Fe irradiated with 
a 100 fs pulse of 8 keV X-rays and 10 µm diameter spot size.  The three sets of curves correspond to different pulse energies: 

upper – 0.1 mJ, middle – 0.5 mJ, lower – 1.0 mJ.  For each pairs of curves, the upper (red) curve includes the effects of 
degeneracy, while the lower (blue) curve does not include degeneracy.  (b) Absorption coefficient for solid density Fe at Te = 10 

eV.  The lower (red) curve includes the effects of degeneracy, while the upper (blue) curve does not include degeneracy.  The 
Fermi energy of this material is ~40 eV. 

 
Blocking factors for photoionizing transitions can be important for XFEL applications, despite the use of multi-

keV photons.  Fermi energies for solid materials vary from a few tens to a few hundred eV, directly affecting 
ionization and heating rates for experiments driven by photons slightly above ionization edges.  For experiments that 
heat materials to tens or hundreds of eV, both heating and cooling will be significantly affected.  An example of this 
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is given in Figure 3a, which displays the temperature evolution of the center of a 0.01 µm thick foil of solid Fe 
driven with a 100 fs square pulse of 8 keV X-rays, with three sets of curves corresponding to different beam 
energies.  Although the absorption of the 8 keV photons is not affected by degeneracy, higher temperatures result 
from the decreased specific heat of the degenerate matter.  Increased cooling after the drive pulse shuts off is due to 
reduced trapping of ~thermal emitted photons, also resulting in more uniform spatial profiles.  Figure 3b shows the 
effect of degeneracy on the absorption coefficient of solid Fe at a temperature of 10 eV for photons of energy below 
60 eV.  The Fermi energy of the target material varied between 40 and 45 eV during the simulations. 

 

STATE SPACE COVERAGE 
 

The necessity to treat high densities also puts constraints on atomic models.  As densities and collisional rates 
increase, excited states – including those containing multiple excited electrons – hold an increasingly larger fraction 
of state populations, making it important to include these states.  This effect can be analyzed easily with the Saha-
Boltzmann equation in the LTE limit.  For radiatively-driven systems, the need to accommodate ionization and 
excitation by multi-keV photons also requires the inclusion of states with one or more holes in all attainable inner 
shells.  Both these effects greatly increase the number of configurations required in the atomic models used in 
simulations. 

Figure 4 demonstrates these effects for optically thin Fe plasma simulated with atomic models containing 
configurations up to a maximum principal quantum number 10.  Figure 4a shows the fractional number of states that 
have at least one electron in the shell identified by principal quantum number n as a function of electron density for 
a fixed electron temperature of 200 eV.  For all shells with n>3, the fractional number increases with electron 
density (approximately as ne

2) until continuum lowering begins to destroy those states.  Figure 4b shows the 
simulated emission spectrum from Fe at a temperature of 100 eV and electron density of 1024 cm-3 irradiated by 10 
TW/cm2 of 12 keV photons.  The individual spectra were calculated with screened-hydrogenic atomic models that 
differed only in the maximum number of excited electrons allowed in the set of superconfigurations used to 
construct the model.  The major spectral features differ considerably when calculated with 2 or 3 excitations, and do 
not converge until 5 or more excitations.  The use of superconfigurations here does not produce a realistic spectrum 
for these conditions, but the distinct spectral features do facilitate an understanding of the effects of the state space 
on the emission. 

 

 
 

(a) 

 
 

(b) 

FIGURE 4.  (a) Fractional number of states populating shells with principal quantum numbers 1-10 for Fe at a temperature of Te 
= 200 eV as a function of electron density.  (b) Emissivity of Fe at a temperature of Te = 100 eV and fixed electron density of ne = 
1024 cm-3 irradiated by 10 TW of 12 keV photons.  The curves correspond to atomic models including superconfigurations with 

different maximum numbers of excited electrons – 2 (blue), 3 (green), 5 (red). 
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INTEGRATED SIMULATIONS 
 

The preceding discussion has focused on three aspects of modeling dense, radiatively driven plasmas with CR 
models, with each aspect considered independently.  Many experiments cover a wide range of densities and 
temperatures as they evolve in space and/or time and simulations must do likewise.  Radiation can then spatially 
couple different regions with disparate conditions and effects from one region may influence the others. 

As an example of this, we consider the spectrum obtained from an imploded NIF capsule presented and partially 
analyzed in [3].  A portion of the experimental spectrum is reproduced in Fig. 5a, with identifications for a few 
features due to Ge emission and absorption.  The analysis in [3] considered only the emission feature between 10.0 
and 10.5 keV, labeled as He-α but including significant emission from related transitions from Li-, Be-, B- and C-
like Ge.  Figure 5a also shows a simulated spectrum produced with a 1D model constructed by O. Ciricosta 
consisting of 4 uniform concentric shells.  The shells correspond to features of the original target: (1) the (unablated) 
capsule shell, (2) DT ice, (3) DT gas with ablator material mixed in, and (4) DT gas.  A pie diagram of the model is 
given in Fig. 5b, with each shell labeled with values of electron temperature and electron density used to produce the 
simulated spectrum. 

 
 
 

 
 

(a) 

 
 

(b) 
 

FIGURE 5.  (a) Experimental (blue) and modeled (red) spectra for the imploded NIF capsule discussed in [3], with 
identifications for a few major features due to Ge emission and absorption.  (b) 4-region model constructed by O. Ciricosta for 

the imploded capsule.  Each of the four regions is labeled with an estimated temperature and electron density.  The shell is 
composed of CH doped with Ge, Si and Cu.  The ice is composed of H.  The remaining two regions comprise the hot spot, which 

is composed of H along with some shell material (without Cu). 
 
The spectrum contains information on the conditions in each of the regions, with some features depending on 

conditions in multiple regions.  The He-α emission is primarily dependent on the hot spot temperature and density, 
although producing the red wing of this feature requires more than a single temperature.  The other strong features - 
K-α fluorescence, the position, shape and depth of the K-edge - are connected by radiation transport and depend 
upon dense plasma features. 

As an example, Fig. 6a shows the spectra resulting from adjusting the temperature of the shell.  The 1s-2p K-α 
feature, driven by radiation from the hot spot, depends on the ionization state of the shell, changing from strong 
fluorescence at low temperatures with minimal excitations, to absorption at temperatures high enough to ionize the 
material into the L-shell, providing 2p vacancies to enable absorptions to dominate.  Producing this feature in a 

0.8

0.6

0.4

0.2

0.0

sig
na

l (
J/

ke
V/

st
er

)

120001100010000

photon energy (eV)

 experiment
 model

Kα 

Heα 

K-edge 

  

  

  

  shell:	100	eV,	10
25	
/cc 

ice:	<50	eV,	10
26	
/cc 

3800	eV 
10

25	
/cc 

2300	eV 
2x10

25	
/cc 



simulation, in either absorption or emission, also requires that the state space for M-shell Ge accommodate the 
relevant transitions.  The shape of the K-edge strongly reflects modification of the absorption edge by electron 
degeneracy; the shell conditions in the 4-shell model correspond to a Fermi energy of 350 eV.  Similarly, changes in 
the IPD model will also affect the spectral features.  The position of the K-edge depends on the amount of 
continuum lowering.  The IPD model can also change the strength of the K-α feature and may also allow a K-β 
feature. 

 

 
 

 

FIGURE 6.  Spectra from a radiation transport / CR simulation of the capsule model for five different shell temperatures. 
 
 

SUMMARY 
 

Radiatively driven dense plasmas present challenges to CR modeling, requiring multiple extensions to the 
standard collisional-radiative formulation.  Including electron degeneracy effects into rate calculations is relatively 
straightforward, particularly in an approximate formulation.  Incorporating ionization potential depression is more 
problematic and a generally applicable model (with a comprehensive understanding of the phenomenon) is still 
lacking.  An additional challenge is the need to identify the extensive range of state space and transitions that may be 
accessed during a simulation and to provide adequate coverage in the atomic data, a requirement made more 
pressing by the non-local coupling of material regions through radiation transport. 
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